CHAPTER

THE MEMORY SYSTEM

CHAPTER OBJECTIVES

In this chapter you will learn about:

Basic memory circuits

Organization of the main memory

Cache memory concept. which shortens the effective memory
access time

Virtual memory mechanism, which increases the apparent size
of the main memory

Magnetic disks, optical disks. and magnetic tapes used for
secondary storage

291

292

CHAPTER 5 + THE MEMORY SYSTEM

Programs and the data they operate on are held in the memory of the computer. In this
chapter, we discuss how this vital part of the computer operates. By now. the reader
appreciates that the execution speed of programs is highly dependent on the speed with
which instructions and data can be transferred between the processor and the memory.
It is also important to have a large memory to facilitate execution of programs that are
large and deal with huge amounts of data.

Ideally. the memory would be fast. large. and inexpensive. Unfortunately. it is
impossible to meet all three of these requirements simultaneously. Increased speed and
size are achieved at increased cost. To solve this problem. much work has gone into
developing clever structures that improve the apparent speed and size of the memory.
yet keep the cost reasonable.

First, we describe the most common components and organizations used to im-
plement the memory. Then we examine memory speed and discuss how the apparent
speed of the memory can be increased by means of caches. Next, we present the virtual
memory concept. which increases the apparent size of the memory. Finally, we discuss
the secondary storage devices. which provide much larger storage capability.

5.1 SOME BASIC CONCEPTS

The maximum size of the memory that can be used in any computer is determined by
the addressing scheme. For example. a 16-bit computer that generates 16-bit addresses
is capable of addressing up to 2'® = 64K memory locations. Similarly. machines whose
instructions generate 32-bit addresses can utilize a memory that contains up to 2% = 4G
(giga) memory locations. whereas machines with 40-bit addresses can access up to
2" =T (tera) locations. The number of locations represents the size of the address
space of the computer.

Most modern computers are byte addressable. Figure 2.7 shows the possible address
assignments for a byte-addressable 32-bit computer. The big-endian arrangement is
used in the 68000 processor. The little-endian arrangement is used in Intel processors.
The ARM architecture can be configured to use either arrangement. As far as the
memory structure is concerned. there is no substantial difference between the two
schemes.

The memory is usually designed to store and retrieve data in word-length quantitics.
In fact, the number of bits actually stored or retrieved in one memory access is the most
common definition of the word length of a computer. Consider, for example. a byte-
addressable computer whose instructions generate 32-bit addresses. When a 32-bit
address 1s sent from the processor to the memory unit. the high-order 30 bits determine
which word will be accessed. If a byte quantity is specified. the low-order 2 bits of the
address specify which byte location is involved. In a Read operation. other bytes may
be tetched from the memory. but they are ignored by the processor. If the byte operation
is a Write, however. the control circuitry of the memory must ensure that the contents
of other bytes of the same word are not changed.

Modern implementations of computer memory are rather complex and difficult to
understand on first encounter. To simplify our introduction to memory structures, we

5.1 SOME BasiC CONCEPTS

‘ Memory
k-bit
address bus
A
1]
n-bit
data bus
\a bus N Up to 2% addressable
A locations

Word length = n bits

Vi

Control lines
(R/W.MFC. ctc.)

Figure 5.1 Connection of the memory to the processor.

will first present a traditional architecture. Then, in later sections. we will discuss the
Jatest approaches.

From the system standpoint, we can view the memory unit as a black box. Data
transfer between the memory and the processor takes place through the use of two
processor registers. usually called MAR (memory address register) and MDR (memory
data register), as introduced in Section 1 2. If MAR is k bits long and MDR is 12 bits long.
then the memory unit may contain up to 2% addressable locations. During a memory
cycle. n bits of data are transferred between the memory and the processor. This transfer
takes place over the processor bus. which has & address lines and n data lines. The bus
also includes the control lines Read/Write (R/W) and Memory Function Completed
(MEC) for coordinating data transfers. Other control lines may be added to indicate
the number of bytes to be transterred. The connection between the processor and the
memory is shown schematically in Figure 5.1.

The processor reads data from the memory by loading the address of the required
memory location into the MAR register and setting the R/W line to 1. The memory
responds by placing the data from the addressed location onto the data lines. and
confirms this action by asserting the MFC signal. Upon receipt of the MFC signal. the
processor loads the data on the data lines into the MDR register.

The processor writes data into a memory Jocation by loading the address of this
location into MAR and loading the data into MDR. It indicates that a write operation
is involved by setting the R/W line to 0.

If read or write operations involve consecutive address Jocations in the main mem-
ory. then a “block transfer” operation can be performed in which the only address sent
to the memory is the one that identifies the first location. We will encounter a need for
such block transfers in Section 5.5.

Memory accesses may be synchronized using a clock, or they may be controlled
using special signals that control transfers on the bus: using the bus signaling schemes
described in Section 4.5.1. Memory read and write operations are controlled as input
and output bus transfers. respectively.

293

294

CHAPTER 5 + THE MEMORY SYSTEM

* A useful measure of the speed of memory units is the time that elapses between the
initiation of an operation and the completion of that operation, for example, the time
between the Read and the MFC signals. This is referred to as the memory access time.
Another important measure is the memory cycle time, which is the minimum time delay
required between the initiation of two successive memory operations, for example, the
time between two successive Read operations. The cycle time is usually slightly longer
than the access time, depending on the implementation details of the memory unit.

A memory unit is called random-access memory (RAM) if any location can be
accessed for a Read or Write operation in some fixed amount of time that is independent
of the location’s address. This distinguishes such memory units from serial, or partly
serial, access storage devices such as magnetic disks and tapes. Access time on the
latter devices depends on the address or position of the data.

The basic technology for implementing the memory uses semiconductor integrated
circuits. The sections that follow present some basic facts about the internal structure
and operation of such memories. We then discuss some of the techniques used to
increase the effective speed and size of the memory.

The processor of a computer can usually process instructions and data faster than
they can be fetched from a reasonably priced memory unit. The memory cycle time,
then, is the bottleneck in the system. One way to reduce the memory access time is to
use a cache memory. This is a small, fast memory that is inserted between the larger,
slower main memory and the processor. It holds the currently active segments of a
program and their data.

Virtual memory is another important concept related to memory organization. So
far, we have assumed that the addresses generated by the processor directly specify
physical locations in the memory. This may not always be the case. For reasons that
will become apparent later in this chapter, data may be stored in physical memory
locations thathave addresses different from those specified by the program. The memory
control circuitry translates the address specified by the program into an address that
can be used to access the physical memory. In such a case, an address generated by
the processor is referred to as a virmual or logical address. The virtual address space
is mapped onto the physical memory where data are actually stored. The mapping
function is implemented by a special memory control circuit, often called the memory
management unit. This mapping function can be changed during program execution
according to system requirements.

Virtual memory is used to increase the apparent size of the physical memory. Data
are addressed in a virtual address space that can be as large as the addressing capability
of the processor. But at any given time, only the active portion of this space is mapped
onto locations in the physical memory. The remaining virtual addresses are mapped
onto the bulk storage devices used, which are usually magnetic disks. As the active
portion of the virtual address space changes during program execution, the memory
management unit changes the mapping function and transfers data between the disk
and the memory. Thus, during every memory cycle, an address-processing mechanism
determines whether the addressed information is in the physical memory unit. If it is.
then the proper word is accessed and execution proceeds. If it is not, a page of words
containing the desired word is transferred from the disk to the memory, as explained in
Section 5.7.1. This page displaces some page in the memory that is’cﬂurrently inactive.

5.2 SEMICONDUCTOR RAM MEMORIES

Because of the time required to move pages between the disk and the memory, there
is a speed degradation if pages are moved frequently. By judiciously choosing which
page to replace in the memory. however, there may be reasonably long periods when
the probability is high that the words accessed by the processor are in the physical
memory unit.

This section has briefly introduced several organizational features of memory sys-
tems. These features have been developed to help provide a computer system with as
large and as fast a memory as can be afforded in relation to the overall cost of the
system. We do not expect the reader to grasp all the ideas or their implications now;
more detail is given later. We introduce these terms together to establish that they are
related: a study of their interrelationships is as important as a detailed study of their
individual features.

e
5.2 SEMICONDUCTOR RAM MEMORIES

Semiconductor memories are available in a wide range of speeds. Their cycle times
range from 100 ns to less than 10 ns. When first introduced in the late 1960s, they were
much more expensive than the magnetic-core memories they replaced. Because of rapid
advances in VLSI (Very Large Scale Integration) technology, the cost of semiconductor
memories has dropped dramatically. As a result. they are now used almost exclusively
in implementing memories. In this section, we discuss the main characteristics of
semiconductor memories. We start by introducing the way that a number of memory
cells are organized inside a chip.

A

5.2.1 INTERNAL ORGANIZATION OF MEMORY CHIPS

Memory cells are usually organized in the form of an array. in which each cell is capable
of storing one bit of information. A possible organization is illustrated in Figure 5.2.
Each row of cells constitutes a memory word. and all cells of a row are connected to
a common line referred to as the word line, which is driven by the address decoder
on the chip. The cells in each column are connected to a Sense/Write circuit by two
bit lines. The Sense/Write circuits are connected to the data input/output lines of the
chip. During a Read operation, these circuits sense, or read. the information stored in
the cells selected by a word line and transmit this information to the output data lines.
During a Write operation, the Sense/Write circuits receive input information and store
it in the cells of the selected word.

Figure 5.2 is an example of a very small memory chip consisting of 16 words of
8 bits each. This is referred to as a 16 x 8 organization. The data input and the data
output of each Sense/Write circuit are connected to a single bidirectional data line that
can be connected to the data bus of a computer. Two control lin_g._%;R/W and CS, are
the required operation, and the CS (Chip Select) input selects a given chip in a multichip
memory system. This will be discussed in Section 5.2.4.

295

296

B
— - /

CHAPTER 5 ¢ THE MEMORY SYSTEM

b- b'- b, b, b, b,
il]] |
- = - | Fr |
—
vl T T AN
—

Address . . Memory
decoder cells

.
.
..
.
.

Wi || . l
Sense / Write Sense / Write Sense / Write R/W
circuit cireuit circuit <
Data input/output lines: h- b, by

Figure 5.2 Organization of bit cells in a memory chip.

The memory circuit in Figure 5.2 stores 128 bits and requires 14 external connec-
tions for address. data. and control lines. Of course. it also needs two lines for power
supply and ground connections. Consider now a slightly larger memory circuit, one
that has 1K (1024) memory cells. This circuit can be organized as a 128 x 8 memory.
requiring a total of 19 external connections. Alternatively. the same number of cells
can be organized into a 1K x 1 format. In this case. a 10-bit address is needed. but there
is only one data line, resulting in 15 external connections. Figure 5.3 shows such an
organization. The required 10-bit address is divided into two groups of S bits each to
form the row and column addresses for the cell array. A row address selects a row of 32
cells, all of which are accessed in parallel. However. according to the column address.
only one of these cells is connected to the external data line by the output multiplexer
and input demultiplexer.

Commercially available memory chips contain a much larger number of memory
cells than the examples shown in Figures 5.2 and 5.3. We use small examples to make
the figures easy to understand. Large chips have essentially the same organization as
Figure 5.3 but use a larger memory cell array and have more external connections. For
example, a 4M-bit chip may have a 512K x 8 organization, in which case 19 address
and 8 data input/output pins are needed. Chips with a capacity of hundreds of megabits
are now available.

5.2 SEMICONDUCTOR RAM MEMORIES

address

S-bit row
address W,
/ it
32 x 32
5-bi . A)
{ d C’C:il[m, . memory ccll
\ array
W, .
V4 ' Sense/Write
l_ I I I ! | circuitry
10-bit | ————————
address /[
/ 32-10-1 R/W
l output multiplexer
\ and cs
\ input demultiplexer '
S-bit column I

Data
input/output

Figure 5.3 Organization of a 1K x 1 memory chip.

5.2.2 STATIC MEMORIES

Memories that consist of circuits capable of retaining their state as long as power is
applied are known as static memories. Figure 5.4 illustrates how a static RAM (SRAM)
cell may be implemented. Two inverters are cross-connected to form a latch. The latch
is connected to two bit lines by transistors 77 and T>. These transistors act as switches
that can be opened or closed under control of the word line. When the word line is at
eround level. the transistors are turned off and the latch retains its state. For example.
let us assume that the cell is in state 1 if the logic value at point X is | and at point Y is
0. This state is maintained as long as the signal on the word line is at ground level.

Read Operation

In order to read the state of the SRAM cell. the word line is activated to close
switches T, and Ts. If the cell is in state 1. the signal on bit line » is high and the signal
on bit line #" is low. The opposite is true if the cell is in state 0. Thus, b and b" are
complements of each other. Sense/Write circuits at the end of the bit lines monitor the
state of b and 5" and set the output accordingly.

Write Operation

The state of the cell is set by placing the appropriate value on bit line » and its com-
plement on #’. and then activating the word line. This forces the cell into the correspond-
ing state. The required signals on the bit lines are generated by the Sense/Write circuit.

297

298

CHAPTER 5 + THE MEMORY SYSTEM

>

o<

Word linc

Bit lines -

Figure 5.4 A static RAM cell.

v,\uppi\

!
T;|o- ACI T,

T p— B

JH

RS

Word line

Bit lines -

Figure 5.5 An example of a CMOS memory cell.

CMOS Cell

A CMOS realization of the cell in Figure 5.4 is given in Figure 5.5. Transistor pairs
(T3. Ts) and (T3 T,,) form the inverters in the latch (see Appendix A). The state of the
cell 1s read or written as just explained. For example. in state 1. the voltage at point X
is maintained high by having transistors 75 and T on. while Ty and Ts are off. Thus.

5.2 SEMICONDUCTOR RAM MEMORIES

if T, and 7> are turned on (closed), bit lines b and b’ will have high and low signals.
respectively.

The power supply voltage. Vv is SV in older CMOS SRAMs or 3.3 V in new
low-voltage versions. Note that continuous power is needed for the cell to retain its
state. If power is interrupted. the cell’s contents will be lost. When power is restored.
the latch will settle into a stable state. but it will not necessarily be the same state the
cell was in before the interruption. Hence. SRAMs are said to be volatile memories
because their contents are lost when power is interrupted.

A major advantage of CMOS SRAMs is their very low power consumption because
current flows in the cell only when the cell is being accessed. Otherwise, Ty. 7>. and one
transistor in each inverter are turned off. ensuring that there is no active path between
Vuppiv and ground.

Static RAMSs can be accessed very quickly. Access times of just a few nanoseconds
are found in commercially available chips. SRAMs are used in applications where
speed is of critical concern.

,/-
5.2.3 ASYNCHRONOUS DRAMS

Static RAMs are fast. but they come at a high cost because their cells require several
transistors. Less expensive RAMs can be implemented it simpler cells are used. How-
ever. such cells do not retain their state indefinitely; hence. they are called dynamic
RAMs (DRAMs).

Information is stored in a dynamic memory cell in the form of a charge on a
capacitor, and this charge can be maintained for only tens of milliseconds. Since the
cell is required to store information for a much longer time. its contents must be
periodically refreshed by restoring the capacitor charge to its full value.

An example of a dynamic memory cell that consists of a capacitor. €. and a
transistor, 7. is shown in Figure 5.6. In order to store information in this cell. transistor

Bit line

Word line

1.
L

Figure 5.6 A single-ransistor dynamic memory cell.

'R 5 « THE MEMORY SYSTEM

:d on and an appropriate voltage is applied to the bit line. This causes a known
f charge to be stored in the capacitor.
“the transistor is turned off, the capacitor begins to discharge. This is caused
acitor’s own leakage resistance and by the fact that the transistor continues to
tiny amount of current, measured in picoamperes, after it is turned off. Hence.
ation stored in the cell can be retrieved correctly only if it is read before the
the capactitor drops below some threshold value. During a Read operation.
the transistor in a selected cell is turned on. A sense amplifier connected to the bit line
detects whether the charge stored on the capacitor is above the threshold value. If so. it
drives the bit line to a full voltage that represents logic value 1. This voltage recharges
the capacitor to the full charge that corresponds to logic vajue 1. If the sense amplifier
detects that the charge on the capacitor is below the threshold value. it pulls the bit
line to ground level. which ensures that the capacitor will have no charge, representing
logic value 0. Thus. reading the contents of the cell automatically refreshes its contents.
All cells in a selected row are read at the same time. which refreshes the contents of
the entire row. The detailed implementation of the sense amplifier circuit is beyond the
scope of this book.

A 16-megabit DRAM chip, configured as 2M x 8. is shown in Figure 5.7. The
cells are organized in the form of a 4K x 4K array. The 4096 cells in each row are
divided into 512 groups of 8. so that a row can store 512 bytes of data. Therefore, 12
address bits are needed to select a row. Another 9 bits are needed to specify a group
of § bits in the selected row. Thus. a 21-bit address is needed to access a byte in this
memory. The high-order 12 bits and the low-order 9 bits of the address constitute

66T

RAS
\
Row ‘ ’ 5
—™ address |7/ Row . 4096 x (512 x8)
latch |+ decoder | cell array
Ao/ — Sense / Write [CS
circuits R/W
Column -
L N address N Column
lmcﬂ 1 decoder
[
cAsS —m@M8M8M8m— D, D,

Figure 5.7 Internal organization of a 2M x 8 dynamic memory chip.

5.2 SEMICONDUCTOR RAM MEMORIES

the row and column addresses of a byte. respectively. To reduce the number ol pins
needed for external connections, the row and column addresses are multiplexed on 12
pins. During a Read or a Write operation. the row address is applied first. Itis loaded
into the row address latch in response to a signal pulse on the Row Address Strobe
(RAS) input of the chip. Then a Read operation is initiated. in which all cells on the
selected row are read and refreshed. Shortly after the row address is loaded. the column
address is applied to the address pins and loaded into the column address latch under
control of the Column Address Strobe (CAS) signal. The information in this latch is
decoded and the appropriate group of 8 Sense/Write circuits are selected. If the R/W
control signal indicates a Read operation. the output values of the sclected circuits are
transferred to the data lines, D7 . For a Write operation. the information on the D7 ¢
lines is transferred to the selected circuits. This information is then used to overwrite
the contents of the selected cells in the corresponding 8 columns. We should note that
in commercial DRAM chips. the RAS and CAS control signals are active low so that
they cause the latching of addresses when they change from high to low. To indicate
this fact, these signals are shown on diagrams as RAS and CAS.

Applying a row address causes all cells on the corresponding row to be read and
refreshed during both Read and Write operations. To ensure that the contents of a
DRAM are maintained. cach row of cells must be accessed periodically. A refresh
circrir usually performs this function automatically. Many dynamic memory chips
incorporate a refresh facility within the chips themselves. In this case. the dynamic
nature of these memory chips is almost invisible to the user.

In the DRAM described in this section. the timing of the memory device is con-
trolled asynchronously. A specialized memory controller circuit provides the necessary
control signals, RAS and CAS. that govern the timing. The processor must take into
account the delay in the response of the memory. Such memories are referred 1o as
asynehronous DRAMS.

Because of their high density and fow cost. DRAMs are widely used in the memory
units of computers. Available chips range in size from 1M o 256M bits, and cven larger
chips are being developed. To reduce the number of memory chips needed in a given
computer, a DRAM chip is organized to read or write a number of bits in parallel.
as indicated in Figure 5.7. To provide flexibility in designing memory systems. these
chips are manufactured in different organizations. For example. a 6<4-Mbit chip may be
organized as 16M x 4. 8M x 8 or 4M x 6.

Fast Page Mode

When the DRAM in Figure 5.7 is accessed. the contents of all 4096 cells in the
selected row are sensed. but only 8 bits are placed on the data lines D7_. This byte is
selected by the column address bits Ay o. A simple modification can make it possible
(0 access the other bytes in the same row without having to reselect the row. A latch
can be added at the output of the sense amplifier in each column. The application of
a row address will load the latches corresponding to all bits in the selected row. Then.
it is only necessary to apply different column addresses to place the different bytes on
the data lines.

The most useful arrangement is to transfer the bytes in sequential order. which is
achieved by applying a consecutive sequence of column addresses under the control

log

TER 5 ¢ THE MEMORY SYSTEM

iccessive CAS signals. This scheme allows transterring a block of data at a much
ar rate than can be achieved for transfers involving random addresses. The block
wher capability is reterred to as the fast page mode feature. (Popular jargon refers
small groups of bytes as blocks. and larger groups as pages.)
The faster rate attainable in block transters can be exploited in applications in which
acmory accesses tollow regular patterns. such as in graphics terminals. This feature 15
also beneficial in general-purpose computers for transferring data blocks between the
main memory and a cache. as we will explain in Section 5.5.

5.2.4 SYNCHRONOUS DRAMS

More recent developments i memory technology have resulted in DRAMs whose
operation is directly synchronized with a clock signal. Such memories are known as
synchronows DRAMs (SDRAMSs). Figure 5.8 indicates the structure of an SDRAM. The
cell array is the same as in asynchronous DRAMs. The address and data connections
are buffered by means of registers. We should particularly note that the output of each

Refresh

counter
Row R
— — N OW .
address : el arr
¢ - — A decoder Cell array
e .

Row/Column
address

Column . .
Column] Read/Write
address :> : Readr
- decoder circuits & latches

counter *

Clock — -
RAS == Mode register

CAS —»f and

R/ W tuming control

CS —= {}
v

Data

Data input Data output
register register

Figure 5.8 Synchronous DRAM.

5.2 SEMICONDUCTOR RAM MEMORIES

sense amplifier is connected to a latch. A Read operation causes the contents of all
cells in the selected row to be loaded into these latches. But. it an access is made for
refreshing purposes only. it will not change the contents of these latches: it will merely
refresh the contents of the cells. Data held in the latches that correspond to the selected
column(s) are transferred into the data output register. thus becoming available on the
data output pins.

SDRAMs have several different modes ol operation. which can be selected by

writing control information into a mode register. For example. burst operations of

difterent lengths can be specified. The burst operations use the block transfer capability
described above as the fast page mode feature. In SDRAMs. it is not necessary to
provide externally generated pulses on the CAS line to select successive columns. The
necessary control signals are provided internally using a column counter and the clock
signal. New data can be placed on the data lines in cach clock cycle. All actions are
triggered by the rising edge of the clock.

or 3 clock cycles (we use 2 in the figure) 1o activate the selected row. Then. the column
address is latched under control of the CAS signal. After a delay of one clock cycle. the
first set of data bits is placed on the data lines. The SDRAM automatically increments
the column address to access the next three sets of bits in the selected row. which are
placed on the data lines in the next 3 clock cycles.

SDRAMSs have built-in refresh circuitry. A part of this circuitry is a refresh counter.
which provides the addresses of the rows that are selected for refreshing. Ina typical
SDRAM. cach row must be refreshed at least every 64 ms.

Commercial SDRAMs can be used with clock speeds above 100 MHz. These chips
are designed to meet the requirements of commercially avatlable processors thatare used

R/W

RAS

Address

.
_11

_J [| T
.

I e e R
Data (DOXDIXD2XD3)——-

Figure 5.9 Burst read of length 4 in an SDRAM.

303

304

CHAPTER 5 <+ THE MEMORY SYSTEM

in large volume. For example. Intel has defined PC100 and PC133 bus specifications
in which the system bus (to which the main memory is connected) is controlled by u
100 or 133 MHz clock. respectively. Therefore. major manufacturers of memory chips
produce 100 and 133 MHz SDRAM chips.

Latency and Bandwidth

Transfers between the memory and the processor involve single words of data or
small blocks of words (to or from the processor caches which are discussed in Section
5.5). Large blocks. constituting a page of data. are transferred between the memory
and the disks. as described in Section 5.7. The speed and efficiency of these transfers
have a large impact on the performance of a computer system. A good indication of the
performance is given by two parameters: latency and bandwidth.

The term memory latency is used 1o refer to the amount of time it takes to transfer
a word of data to or from the memory. In the case of reading or writing a single word
of data. the latency provides a complete indication of memory performance. But. in
the case of burst operations that transfer a block of data. the time needed to complete
the operation depends also on the rate at which successive words can be transferred
and on the size of the block. In block transfers. the term latency is used to denote the
time it takes 1o transfer the first word of data. This time is usually substantially longer
than the time needed to transfer each subsequent word of a block. For instance. in the
timing diagram in Figure 5.9. the access cycle begins with the assertion of the RAS
signal. The first word of data is transferred five clock cycles tater. Thus. the latency is
five clock cycles. If the clock rate is 100 MHz. then the latency is 50 ns. The remaining
three words are transferred in consecutive clock cycles.

When transferring blocks of data. it is of interest to know how much time is
needed to transfer an entire block. Since blocks can be variable in size. it is useful
to define a performance measure in terms of the number of bits or bytes that can be
transferred in one second. This measure is often referred 1o as the memory bandwidih.
The bandwidth of & memory unit (consisting of one or more memory chips) depends
on the speed of access to the stored data and on the number of bits that can be accessed
in parallel. However. the effective bandwidth in a computer system (involving data
transfers between the memory and the processor) is not determined solely by the specd
of the memory: it also depends on the transter capability of the links that connect the
memory and the processor. typically the speed of the bus. Memory chips are usually
designed to meet the speed requirements of popular buses. The bandwidth clearly
depends on the speed of access and transmission along a single wire, as well as on the
number of bits that can be transterred in parallel. namely the number of wires. Thus.
the bandwidth is the product of the rate at which data are transferred (and accessed)
and the width of the data bus.

Double-Data-Rate SDRAM

In the continuous quest for improved performance. a fuster version of SDRAM has
been developed. The standard SDRAM performs all actions on the rising edge of the
clock signal. A similar memory device is available. which accesses the cell array in the
same way. but transfers data on both edges of the clock. The latency of these devices is
the same as for standard SDRAMSs. But. since they transfer data on both edges of the

5.2 SEMICONDUCTOR RAM MEMORIES

clock. their bandwidth is essentially doubled for long burst transfers. Such devices are
known as double-data-rate SDRAMs (DDR SDRAMS).

To make it possible to access the dataatahigh enough rate. the cell array isorganized
in two banks. Each bank can be accessed separately. Consecutive words of a given block
are stored in different banks. Such interfeaving of words allows simultaneous access to
(two words that are transterred on successive edges of the clock. We will consider the
concept of interleaving in more detail in Section 5.0.1.

DDR SDRAMs and standard SDRAMs are most efficiently used in applications
where block transfers are prevalent. This is the case in general-purpose computers in
which main memory transfers are primarily to and from processor caches. as we will
wee in Section 5.5. Block transfers are also done in high-quality video displays.

.

5.2.5 STRUCTURE OF LARGER MEMORIES

We have discussed the basic organization of memory circuits as they may be imple-
mented on asingle chip. Next, we should examine how memory chips may be connected
to form a much larger memory.

Static Memory Systems

Consider a memory consisting of 2M (2.097.152) words of 32 bits cach. Figure 5.10
shows how we can implement this memory using 512K x 8 static memory chips. Each

column in the figure consists of four chips. which implement one byte position. Four of

these sets provide the required 2M x 32 memory. Each chip has a control input called
Chip Select. When this input is set to [. it enables the chip to accept data from or to
place data on its data lines. The data output for each chip is of the three-state type (see
Section A.5.4). Only the selected chip places data on the data output line. while all
other outputs are in the high-impedance state. Twenty one address bits are needed o
weleet a 32-bit word in this memory. The high-order 2 bits of the address are decoded
(o determine which of the four Chip Select control signals should be activated. and the

remaining 19 address bits are used to access specific byte locations inside each chip of

the selected row. The R/W inputs of all chips are tied together to provide a common
Read/Write control (not shown in the figure).

Dynamic Memory Systems

The organization of large dynamic memory systems is essentially the same as the
memory shown in Figure 5.10. However. physical implementation is often done more
conveniently in the form of memory modules.

Modern computers use very large memories: even a small personal computer is
likely to have at least 32M bytes of memory. Typical workstations have at least 128M
bytes of memory. A large memory leads to better performance because more of the
programs and data used in processing can be held in the memory. thus reducing the
frequency of accessing the information in secondary storage. However. if a large mem-
ory is built by placing DRAM chips directly on the main system printed-circuit board
that contains the processor. often referred to as a motherboard. it will occupy an unac-
ceptably large amount of space on the board. Also. it is awkward to provide for future

305

306

CHAPTER 5 + THE MEMORY SYSTEM

21-bit

addresses 19-bit internal chip address

A,
YL
— — =1 = = =
An—
z\y—_ — 1 1 J.
— Kl K== — k=
(I T I
1 B =Y Y Y e
2-hic ¢ }_ i l I |
decoder
= k=l A e
/T T T]

S12K Vv {/ {/ {L

memory chip

SI2K x 8 memory chip

19-bit :::: = 8-bit data
address input/output

f

Chip select

Figure 5.10 Organization of a 2M x 32 memory module using 512K x 8 static
memory chips.

expansion of the memory. because space must be allocated and wiring provided for
the maximum expected size. These packaging considerations have led 1o the devel-
opment of larger memory units known as SIMMs (Single In-line Memory Modules)
and DIMMs (Dual In-line Memory Modules). Such a module is an assembly of several
memory chips on a separate small board that plugs vertically into a single socket on the
motherboard. SIMMs and DIMMs of different sizes are designed to use the same size
socket. For example. 4M x 32, 16M « 32, and 32M x 32 bit DIMMs all use the same

5.2 SEMICONDUCTOR RAM MEMORIES

100-pin socket. Similarly. 8M x 64, 16M x 64 32M x 64 and 64M x 72 DIMMs use
a 168-pin socket. Such modules occupy a smaller amount of space on a motherboard.,
and they allow easy expansion by replacement il a larger module uses the same socket
as the smaller one.

-

-t

5.2.6 MEMORY SYSTEM CONSIDERATIONS

The choice of @ RAM chip for a given application depends on several factors. Foremost
among these factors are the cost. speed. power dissipation. and size of the chip.

Static RAMs are generally used only when very fast operation is the primary
requirement. Their cost and size are adversely affected by the complexity of the circuit
that realizes the basic cell. They are used mostly in cache memories. Dynamic RAMs are
the predominant choice for implementing computer main meimories. The high densities
achievable in these chips make large memories economically feasible.

Memory Controller

To reduce the number of pins. the dynamic memory chips use multiplexed address
inputs. The address is divided into two parts. The high-order address bits. which select
arow in the cell array. are provided first and latched into the memory chip under control
of the RAS signal. Then. the low-order address bits. which selecta column. are provided
on the same address pins and latched using the CAS signal.

A typical processor issues all bits of an address at the same time. The required
multiplexing of address bits is usually performed by a memory controller circuit. which
is interposed between the processor and the dynamic memory as shown in Figure 5.11.
The controller accepts a complete address and the R/W signal from the processor. under
control of a Reguest signal which indicates that a memory access operation is needed.
The controller then forwards the row and column portions of the address to the memory
and generates the RAS and CAS signals. Thus. the controller provides the RAS-CAS
timing. in addition to its address multiplexing function. It also sends the RZW and €S

Row/Column

Address address
—
RAS
R/ W S
Memory CA:
Request controller R/W
Processor . ™ Memory
CS :
Clock I
Clock
<— >

Data

Figure 5.11 Use of a memory confroller.

307

308

CHAPTER 5 + THE MEMORY SYSTEM

signals to the memory. The CS signal is usually active low. hence it is shown as CS in
Figure 5.11. Data fines are connected directly between the processor and the memory.
Note that the clock signal is needed in SDRAM chips.

When used with DRAM chips. which do not have self-refreshing capability. the
memory controller has to provide all the information needed to control the refreshing
process. [teontains arefresh counter that provides successive row addresses. Its function
is to cause the refreshing of all rows to be done within the period specified for a particular
device.

Refresh Overhead

All dynamic memories have to be refreshed. In older DRAMs. a typical period for
refreshing all rows was 16 ms. In typical SDRAMs. a typical period is 64 ms.

Consider an SDRAM whose cells are arranged in 8K (=8192) rows. Suppose that it
takes four clock cycles to access (read) each row. Then. it takes 8192 x 4 = 32.768 Cy-
clestorefreshall rows. Ataclock rate of 133 MHz. the time needed to refresh all rows is
32.768/(133 x 10°) = 246 x 10" seconds. Thus. the refreshing process occupies (0.246
ms in each 64-ms time interval. Therefore. the refresh overhead is 0.246/64 = 0.0038.
which is less than 0.4 percent of the total time available for accessing the memory.

5.2.7 RAMBUS MEMORY

The performance of a dynamic memory is characterized by its latency and bandwidth.
Since all dynamic memory chips use similar organizations for their cell arrays, their
latencies tend to be similar if the chips are produced using the same manufacturing
process. On the other hand. the effective bandwidth of a memory system depends not
only on the structure of the memory chips. but also on the nature of the connecting path to
the processor. DDR SDRAMs and standard SDRAMS are connected to the processor
bus. Thus. the speed of transfers is not just a function of the speed of the memory
device — it also depends on the speed of the bus. A bus clocked at 133 MHz allows at
mostone transfer every 7.5 ns. or two transfers if both edges of the clock are used. The
only way to increase the amount of data that can be transterred on a speed-limited bus
is to increase the width of the bus by providing more data lines. thus widening the bus.

A very wide bus is expensive and requires a tot of space on a motherboard. An
alternative approach is o implement a narrow bus that is much faster. This approach
was used by Rambus Inc. to develop a proprietary design known as Rambus. The key
feature of Rambus technology is a fast signaling method used to transter information
between chips. Instead of using signals that have voltage levels of either 0 or Viuppiv 10
represent the logic values. the signals consist of much smaller voltage swings around a
reference voltage. V,,. The reference voltage is about 2 V. and the two logic values are
represented by 0.3 V swings above and below V,,. This type of signaling is generally
known as differential signaling. Small voltage swings make it possible to have short
transition times. which allows for a high speed of transmission.

Ditferential signaling and high transmission rates require special techniques for the
design ol wire connections that serve as communication links. These requirements make

5.3 READ-ONLY MEMORIES

it difficult to make the bus wide. It is also necessary to design special circuit interfaces
to deal with the differential signals. Rambus provides a complete specification for the
design of such communication links. called the Rambus channel. Present designs of
Rambus allow for a clock frequency of 400 MHz. Morcover. data are transmitted on
both edges of the clock. so that the effective data transfer rate is 800 MHz.

Rambus requires specially designed memory chips. These chips use cell arrays
based on the standard DRAM technology. Multiple banks of cell arrays are used to
access more than one word at a time. Circuitry needed to interface to the Rambus
channel is included on the chip. Such chips are known as Rumbus DRAMs (RDRAM).

The original specification of Rambus provided for a channel consisting of 9 data
lines and & number of control and power supply lines. Eight of the data lines are
intended for transferring a byte of data. The ninth data line can be used lor purposes
such as parity checking. Subscquent specifications allow for additional channels. A
two-channel Rambus. also known as Direct RDRAM, has 18 data lines intended to
ransfer two bytes of data at a time. There are no separate address lines.

Communication between the processor. or some other device that can serve as a
master, and RDRAM modules. which serve as staves, is carried out by means of packets
transmitted on the data lines. There are three types of packets: request. acknowledge.
and data. A request packet issued by the master indicates the type of operation that is
to be performed. Tt contains the address of the desired memory location and includes
an 8-bit count that specifies the number of bytes involved in the transfer. The operation
types include memory reads and writes. as well as reading and writing of various control
registers in the RDRAM chips. When the master issues a request packet. the addressed
slave responds by returning a positive acknowledgement packet it it can immediately
satisfy the request. Otherwise. the slave indicates that itis “busy™ by returning a negative
acknowledgement packet. in which case the master will try again.

The number of bits in a request packet exceeds the number of data lines. which
means that several clock cycles are necded to transmit the entire packet. Using a narrow
communication link is compensated by the very high rate of transmission.

RDRAM chips can be assembled into Turger modules. similar to SIMMs and
DIMMs. One such module. called RIMM. can hold up to 16 RDRAMs.

Rambus technology competes directly with the DDR SDRAM technology. Each
has certain advantages and disadvantages. A nontechnical consideration is that the
specification of DDR SDRAM is an open standard. while RDRAM s a proprietary
design of Rambus Inc. for which the manufacturers of chips have to pay a royalty.
Finally. we should note that in the memory market. assuming that the performance 18
adequate. the decisive factor is often the price of components.

[

5.3 READ-ONLY MEMORIES

Both SRAM and DRAM chips are volatile. wl}ich means that they lose the stored
information it power is turned off. There are many applications that need memory
devices which retain the stored information it power is turned off. For example. in
a typical computer a hard disk drive is used to store a large amount of information.

309

310

CHAPTER 5 -+ THE MEMORY SYSTEM

including the operating system software. When a computer is turned on. the operat-
ing system software has to be loaded from the disk into the memory. This requires
exceution of a program that “boots™ the operating system. Since the boot program is
quite large, most of it is stored on the disk. The processor must execute some instruc-
tions that load the boot program into the memory. If the entire memory consisted of
only volatile memory chips. the processor would have no means of accessing these
mstructions. A practical solution is to provide a small amount of nonvolatile memory
that holds the instructions whose execution results in loading the boot program from
the disk.

Nonvolatile memory is used extensively in embedded systems. which are presented
in Chapter 9. Such systems typically do not use disk storage devices. Their programs
are stored m nonvolatile semiconductor memory devices.

Ditferenttypes of nonvolatile memory have been developed. Generally. the contents
of such memory can be read as if they were SRAM or DRAM memories. But. a special
writing process is needed to place the information into this memory. Since its normal
operation involves only reading of stored data. a memory of this type is called read-only
memory (ROM).

'5.3.1 ROM

Figure 5.12 shows a possible configuration for a ROM cell. A logic value 0 is stored in
the cell if the transistor is connected to ground at point P: otherwise. a | is stored. The
bitline is connected through a resistor to the power supply. To read the state of the cell.
the word line is activated. Thus. the transistor switch is closed and the voltage on the
bit line drops to near zero if there is a connection between the transistor and ground. If
there is no connection to ground. the bit line remains at the high voltage. indicating a
I. A sense circuit at the end of the bit line generates the proper output value. Data are
written into @ ROM when it is manufactured.

Bit tine

Word line

Connected o store a ()

Not connected to store a |

Figure 5.12 A ROM cell.

5.3 READ-ONLY MEMORIES

53.2 PROM

Some ROM designs allow the data to be loaded by the user. thus providing a pro-
grammable ROM (PROM). Programmability is achieved by inserting a fuse at point
P in Figure 5.12. Before it is programmed. the memory contains all Os. The user can
insert Is at the required locations by burning out the fuses at these locations using
high-current pulses. Of course. this process is irreversible.

PROMs provide flexibility and convenience not available with ROMs. The latter
are economically attractive for storing fixed programs and data when high volumes
of ROMs are produced. However. the cost of preparing the masks needed for storing
a particular information pattern in ROMs makes them very expensive when only a
small number are required. In this case. PROMs provide a faster and considerably less
expensive approach because they can be programmed directly by the user.

5.3.3 EPROM

Another type of ROM chip allows the stored data to be erased and new data 1o be
toaded. Such an erasable. reprogrammable ROM is usually called an EPROM. It pro-
vides considerable flexibility during the development phase of digital systems. Since
EPROM s are capable of retaining stored information for a long time. they can be used
in place of ROMs while software is being developed. In this way. memory changes and
updates can be easily made.

An EPROM cell has a structure similar to the ROM cell in Figure 5.12. In an
EPROM cell. however. the connection to ground is always made at point P and a
special transistor is used. which has the ability to function either as a normal transistor
or as a disabled transistor that is always turned off. This transistor can be programmed
(o behave as a permanently open switch. by injecting charge into it that becomes trapped
inside. Thus. an EPROM cell can be used to construct a memory in the same way as
the previously discussed ROM cell.

The important advantage of EPROM chips is that their contents can be erased and

reprogrammed. Erasure requires dissipating the charges trapped in the transistors of

memory cells: this can be done by exposing the chip to ultraviolet light. For this reason.
EPROM chips are mounted in packages that have transparent windows.

i

5.3.4 EEPROM

A significant disadvantage of EPROMs is that a chip must be physically removed from
the circuit for reprogramming and that its entire contents are erased by the ultraviolet
light. It is possible to implement another version of erasable PROMs that can be both
programmed and erased electrically. Such chips. called EEPROMS. do not have 1o
he removed for erasure. Moreover. it is possible to erase the cell contents selectively.
The only disadvantage of EEPROMs is that different voltages are needed for erasing.
writing. and reading the stored data.

K2R

312

CHAPTER 5 + THE MEMORY SYSTEM

/ 5.3.5 FLASH MEMORY

An approach similar to EEPROM technology has more recently given rise to flash
memory devices. A flash cellis based on a single transistor controlled by trapped char ae,
Jjust like an EEPROM cell. While similar in some respects. there are also substantial
diterences between flash and EEPROM devices. In EEPROM it is possible to read and
write the contents of a single cell. In a flash device it is possible 1o read the contents
of asingle cell. but it is only possible 10 write an entire block of cells. Prior to writing.
the previous contents of the block are erased. Flash devices have greater density. which
leads to higher capacity and a lower cost per bit. They require a single power supply
voltage. and consume less power in their operation.

The low power consumption of flash memory makes it attractive for use in portable
equipment that is battery driven. Typical applications include hand-held computers.
cell phones. digital cameras. and MP3 music players. In hand-held computers and
cell phones. flash memory holds the software needed to operate the equipment. thus
obviating the need for a disk drive. In digital cameras. flash memory is used to store
picture image data. In MP3 players. flash memory stores the data that represent sound.
Cell phones. digital cameras. and MP3 players are good examples of embedded systems.
which will be discussed in detail in Chapter 9.

Single flash chips do not provide sufficient storage capacity for the applications
mentioned above. Larger memory modules consisting of a number of chips are needed.
There are two popular choices for the implementation of such modules: flash cards and
flash drives.

Flash Cards

One way of constructing a larger module is to mount flash chips on a small card.
Such flash cards have a standard intertace that makes them usable in a variety of
products. A card is simply plugged into a conveniently accessible slot. Flash cards
come in a variety of memory sizes. Typical sizes are 8. 32, and 64 Mbytes. A minute
of music can be stored in about I Mbyte of memory. using the MP3 encoding format.
Hence. a 64-MB flash card can store an hour of music.

Flash Drives

Larger flash memory modules have been developed to replace hard disk drives.
These flash drives are designed to fully emulate the hard disks. to the point that they
can be fitted into standard disk drive bays. However. the storage capacity of flash drives
is significantly lower. Currently. the capacity of flash drives is less than one gigabyte.
In contrast. hard disks can store many gigabytes.

The fact that flash drives are solid state electronic devices that have no movable
parts provides some imiportant advantages. They have shorter seek and access times.
which results in faster response. (Seek and access times are discussed in the context of
disksin Section 5.9.) They have lower power consumption. which makes them attractive
for battery driven applications. and they are also insensitive to vibration.

The disadvantages of flash drives vis-a-vis hard disk drives are their smaller ca-
pacity and higher cost per bit. Disks provide an extremely low cost per bit. Another

5.4 SPEED, S17E, AND COST

disadvantage is that the flash memory will deteriorate after it has been writlen a number
of times. Fortunately. this number is high. typically at least one million times.

5.4 SPEED, SIZE, AND COST

We have already stated that an ideal memory would be fast. farge. and inexpensive. From

the discussion in Section 5.2, it is clear that a very fast memory can be implemented if

SRAM chips are used. But these chips are expensive because their basic cells have six
transistors. which precludes packing a very large number of cells onto a single chip.
Thus. for cost reasons. it is impractical to build a large memory using SRAM chips.
The alternative is to use Dynamic RAM chips. which have much simpler basic cells
and thus are much less expensive. But such memories are significantly slower.

Although dynamic memory units in the range of hundreds of megabytes can be
implemented at a reasonable cost. the affordable size is still small compared to the
demands of large programs with voluminous data. A solution is provided by using
econdary storage. mainly magnetic disks. to implement large memory spaces. Very
large disks are available at a reasonable price. and they are used extensively in computer
systems. However. they are much slower than the semiconductor memory units. So we
conclude the following: A huge amount of cost-effective storage can be provided by
magnetic disks. A large. yet affordable. main memory can be built with dynamic RAM
technology. This leaves SRAMs to be used in smaller units where speed is of the
essence. such as in cache memories.

All of these different types of memory units are employed effectively in a compulter.
The entire computer memory can be viewed as the hierarchy depicted in Figure 5.13.
The Tastest access is to data held in processor registers. Therefore. if we consider the
registers to be part of the memory hierarchy. then the processor registers are at the top in
terms of the speed of access. Of course. the registers provide only a minuscule portion
ol the required memory.

At the next level of the hierarchy is a relatively small amount of memory that can
he implemented directly on the processor chip. This memory. called a processor cache.
holds copies of instructions and data stored in a much larger memory that is provided
externally. The cache memory concept was introduced in Figure 1.6 and is examined
in detail in Section 5.5. There are often two levels of caches. A primary cache is always
located on the processor chip. This cache is small because it competes for space on
the processor chip. which must implement many other functions. The primary cache
is referred 1o as fevel 1 (L1) cache. A larger. secondary cache is placed between the
primary cache and the rest of the memory. It is referred to as level 2 (1L2) cache. Ttis
usually implemented using SRAM chips.

Including a primary cache on the processor chip and using a larger, off-chip. sec-
ondary cache is currently the most common way of designing computers. However.
other arrangements can be found in practice. Itis possible not to have a cache on the pro-
cessorchip atall. Also.itis possible to have both Lt and L2 caches on the processor chip.

The next level in the hierarchy is called the main memory. This rather large memory
is implemented using dynamic memory components. typically in the form of SIMMs.

313

314

A

CHAPTER 5 ¢+ THE MEMORY SYSTEM

Processor

Registers

Increasing Increasing Increasing
stze speed cost per bit
Printary

cache” LI]]
A

'

Sceondary
cache

A

L2

|

Main
memaory

A
Y
* Magnetic disk

secondary
memory

Figure 5.13 Memory hierarchy.

DIMMs. or RIMMs. The main memory is much larger but significantly slower than the
cache memory. In a typical computer. the access time for the main memory is about ten
times longer than the access time for the L1 cache.

Disk devices provide a huge amount of inexpensive storage. They are very slow
compared to the semiconductor devices used to implement the main memory. We will
discuss disk technology in Section 5.9.

During program execution. the speed of memory access is of utmost importance,
The key to managing the operation of the hierarchical memory system in Figure 513
is 1o bring the instructions and data that will be used in the near future as close o
the processor as possible. This can be done by using the mechanisms presented in the
sections that follow. We begin with a detailed discussion of cache memories.

5.5 CACHE MEMORIES

The speed of the main memory is very low in comparison with the speed of modemn
processors. For good performance. the processor cannot spend much of its time waiting
toaceess instructions and data in main memory. Hence. itis important to devise a \Lhum

5.5 (CACHE MEMORIES

that reduces the time needed to access the necessary information. Since the speed of
the main memory unit is limited by electronic and packaging constraints, the solution
must be sought in a different architectural arrangement. -_A'n efficient solution is to use a
[ast cache memory whichessentially makes the main memory appear o the processor
(o be faster than itreally is.y

The effectiveness of the cache mechanism is based on a property of computer
programs called locality of reference. Analysis of programs shows that most of their
exccution time is spent on routines in which many instructions are exccuted repeatedly.
These instructions may constitute a simple loop. nested loops. or a few procedures
that repeatedly call each other. The actual detailed pattern of instruction sequencing is
not important -— the point is that many instructions in localized areas of the program
are executed repeatedly during some time period. and the remainder of the program is
accessed relatively infrequently. This is referred to as locality of reference. It manifests
el in two ways: temporal and spatial. The firstmeans thata recently executed instrue-
Hon is likely to be executed again very soon. The spatial aspect means that instructions
in close proximity to a recently executed instruction (with respect to the instructions’
addresses) are also likely to be executed soon.

If the active segments of a program can be placed ina fast cache memory. then the
total execution time can be reduced significantly. Conceptually. operation of a cache
memory is very simple. The memory control circuitry is designed to take advantage
of the property of locality of reference. The temporal aspect of the locality of refer-
ence suggests that whenever an information item (instruction or data) is first needed.
this item should be brought into the cache where it will hopefully remain until it is
needed again. The spatial aspect suggests that instead of fetching just one item from
the main memory to the cache. it is useful to fetch several items that reside at adjacent
addresses as well. We will use the term block 1o refer 1o a set ol contiguous address
locations of some size. Another term that is often used o refer to a cache block is
cache line.

Consider the simple arrangement in Figure 5.14. When a Read request is recetved
from the processor. the contents of a block of memory words containing the location
specitied are transferred into the cache one word at a time. Subsequently. when the
program references any of the locations in this block. the desired contents are read

directly from the cache. Usually. the cache memory can store a reasonable number of
blocks at any given time. but this number is amall compared to the total number of

Main

Processor |<e———1 Cache "™ .
MCIMory

Figure 5.14 Use of a cache memory

315

316

CHAPTER 5 < 'THE MEMORY SYSTEM

blocks in the main memory. The correspondence between the main memory blocks
and those in the cache is specified by a mapping function. When the cache is full and
a memory word (instruction or data) that is not in the cache is referenced. the cache
control hardware must decide which block should be removed to create space for the
new block that contains the referenced word. The collection of rules for making this
decision constitutes the replacement algorithm.

The processor does not need to know explicitly about the existence of the cache
It simply issues Read and Write requests using addresses that refer to locations in the
memory. The cache control circuitry determines whether the requested word currently
exists in the cache. it does. the Read or Write operation is performed on the appropriate
cache location. In this case. a read or write hit is said to have occurred. In a Read
operation. the main memory is not involved. For a Write operation. the system can
proceed in two ways. In the first technique. called the write-through protocol. the
cache location and the main memory location are updated simultancously. The second
technique is to update only the cache location and to mark it as updated with an
associated flag bit. often called the dirry or modified bit. The main memory location ol
the word is updated later, when the block containing this marked word is to be removed
from the cache to make room for a new block. This technique is known as the wrire-
hack. or copy-back. protocol. The write-through protocol is stmpler. but it results in
unnecessary Write operations in the main memory when a given cache word is updated
several times during its cache residency. Note that the write-back protocol may also
result in unnecessary Write operations because when a cache block is written back to
the memory all words of the block are written back. even if only a single word has been
changed while the block was in the cache.

When the addressed word in a Read operation is not in the cache. a read miss
oceurs. The block of words that contains the requested word is copied from the main
memory into the cache. After the entire block is loaded into the cache. the particular
word requested is forwarded to the processor. Alternatively. this word may be sent 1o
the processoras soon as it is read from the main memory. The latter approach. which is
called load-through. or early restart, reduces the processor’s w aiting period somewhat.
but at the expense of more complex circuitry.

During a Write operation. if the addressed word is not in the cache. a write miss
occurs. Then. il the write-through protocol is used. the information is written directly
into the main memory. In the case of the write-back protocol. the block containing the
addressed word is first brought into the cache. and then the desired word in the cache
is overwritten with the new information.

5.5.1 MAPPING FUNCTIONS

To discuss possible methods for \pcut\m"' where memory blocks are plaud in the
cache. we use a specitic small example, Consider a cache consisting of 128 blocks
of 16 words cach. for a total of 2048 (2K) words. and assume that the main memon
is addressable by a 16-bit address. The main memory has 64K words. which we wili
view as 4K blocks of 16 words cach. For simplicity. we will assume that consecutive
addresses refer to consecutive words.

5.5 (CACHE MEMORIES

Direct Mapping

/Thc simplest way to duummc cache locations in which to store memory blocks
is tie direct-mapping 1uhmquc In this technique. block j of the main memory maps
onto block j modulo 128 of theé cache. as depicted in Figure 5.15. Thus. ‘whenever one
of the main memory blocks 0. 128,256, ... is loaded in the cache. itis stored in cache
block 0. Blocks 1. 129,257, .. arc stmcd in cache block 1. and so onJSince nore
than one memory block is map'pgd onto a given cache bloek position. ¢ umtentmn may

an 1se]01 llmt po\mon even w hul the ughc‘ Is not tuyFm example. instructions of a

e v

Main
memory

Block |

Cache Bloex 127

tag

= Block 0 Block 128
tag

= Block | Block 129

A\
AN
A\

ltayg
Lwe T gk 127 Block 255

Block 256

Block 257
/: /:
, ~
Block 4095
Tag Block Word
5 7 +4 Main memory address

Figure 5.15 Directmapped cache.

317

318

CHAPTER 5 « THE MEVIORY SYSTEM

program may start in block 1 and continue in block 129, possibly after a branch. As this
prograny is executed. both of these blocks must be transferred (o the block-1 position in
the cache. Contention is resolved by allowing the new block to overwrite the currently
resident block. In this case, the replacement algorithm is trivial.

Placement of a block in the cache is determined from the memory address. The
memory address can be divided into three fields. as shown in Figure 5.15. The low-order
4 bits select one of 16 words in a block. When a new block enters the cache. the 7-hit
cache block field determines the cache position in which this block must be stored. The
high-order 5 bits of the memory address of the block are stored in 5 rag bits associated
with its location in the cache. They identify which of the 32 blocks that are mapped
into this cache position are currently resident in the cache. As execution proceeds. the
7-bit cache block field of cach address generated by the processor points to a particular
block location in the cache. The high-order S bits of the address are compared with the
tag bits associated with that cache location. If they match. then the desired word is in
that block of the cache. If there is no match. then the block containing the required word
must first be read from the main memory and loaded into the cache. The direct-mapping
technique is casy to implement. but it is not very flexible.

Associative Mappigg

Figure 5.16 show fdmuch more flexible mapping method. in which a main memory
block can be placed into any cache block position)In this case. 12 tag bits are required
to identify & memory block when it is resident in the cache. The tag bits of an address
received from the processor are compared to the tag bits of each block of the cache to
see if the desired block is present. This is called the associative-mapping techniquedlt
gives complete freedom in choosing the cache location in which to place the memory
block. Thus. the space in the cache can be used more efficiently. A new block that has to
be brought into the cache has to replace (eject) an existing block only if the cache is full.
Inthis case. we need an algorithm to select the block to be replaced. Many replacement
algorithms are possible. as we discuss in Section 5.5.2, The cost of an associative cache
is higher than the cost of a direct-mapped cache because of the need to search all 128 tag
patterns to determine whether a given bloek is in the cache. A search of this kind is called
an assoctative search. For performance reasons. the tags must be searched in parallel.

Set-Associative Mapping

A combination of the direct- and associative-mapping techniques can be used.
Blocks of the cache are grouped into sets. and the mapping allows a block of the main
memory to reside in any block of a specific set. Hence. the contention problem of
the direct method is eased by having a few choices for block placement. At the same
time. the hardware cost is reduced by decreasing the size of the associative search.
An example of this ser-associative-mapping technique is shown in Figure 5.17 for a
cache with two blocks per set. In this case. memory blocks 0. 64, 128, 4032 map
into cache set 0. and they can occupy either of the two block positions within this set.
Having 64 sets means that the 6-bit set field of the address determines which set of
the cache might contain the desired block. The tag field of the address must then be
associatively compared to the tags of the two blocks of the set to check if the desired
block is present. This two-way associative search is simple to implement.

5.5 (CACHE MEMORIES

Main
memory

Block 0
Block |

Cache
I tayg
Block 0 P e
1/ //

Block |

tag
Block 127

Block

Tag Word

12 + Main memory address

Figure 5.16 Associative-mapped cache.

The number of blocks per set is a parameter that can be selected to suit the require-
ments of a particular computer. For the main memory and cache sizes in Figure 5.17.
four blocks per set can be accommodated by a 5-bit set field. cight blocks per set by
a 4-bit set ficld. and so on. The extreme condition of 128 blocks per set requires no
set bits and corresponds to the fully associative technigue. with 12 tag bits. The other
extreme of one block per set is the direct-mapping method. A cache that has & blocks
per setis referred to as a k-way set-associative cache.

One more control bit. called the valid bir, must be provided for cach block. This
bit indicates whether the block contains valid data. It should not be confused with the
modified. or dirty, bit mentioned earlier. The dirty bit. which indicates whether the
block has been modified during its cache residency. is needed only in systems that do
not use the write-through method. The valid bits are all set to O when power is initially
applied to the system or when the main memory is loaded with new programs and data
from the disk. Transters from the disk to the main memory are carried out by a DMA
mechanism. Normally. they bypass the cache for both cost and performance reasons.
The valid bit of a particular cache block is set to 1 the first time this block is loaded

319

320 CHAPTER 5 + THE MEMORY SYSTEM

Main
memory

Block 0

Block |
Cache :: ::
E Block 0
ock
Set | Block0 |
Se E"“ Block 63
. Block 1
E'” Block 64
] Block 2
Set |
¢ — Block 65
— Block 3
j - -~
o Block 127
[_tee Block 126
Set 63
st — Block 128
=— Block 127
Block 129
> >
Block 4095
Tag Set Word
6 6 -4 Main memory address

Figure 5.17 Setassociative-mapped cache with two blocks per set.

from the main memory. Whenever a main memory block is updated by a source that
bypasses the cache, a cheek is made to determine whether the block being loaded is
currently in the cache. If it is. its valid bit is cleared to). This ensures that stale data
will not exist in the cache.

A similar difficulty arises when a DMA transfer is made from the main memory
to the disk. and the cache uses the write-back protocol. In this case. the data in the
memory might not reflect the changes that may have been made in the cached copy.

5.5 CACHE MEMORIES 321

One solution to this problem is o fliush the cache by forcing the dirty data to be written
back to the memory before the DMA transfer takes place. The operating system can do
this casily. and it does not affect performance greatly. because such disk transters do
not oceur often. This need to ensure that two different entities (the processor and DMA
subsystems in this case) use the same copies of data is referred o as a cache-coherence
problem.

5.5.2 REPLACEMENT ALGORITHMS

In a direct-mapped cache. the position of each block is predetermined: hence. no re-
placement strategy exists. In associative and set-associative caches there exists some
flexibility. When a new block is to be brought into the cache and all the positions that
it may occupy are tull. the cache controller must decide which of the old blocks to
overwrite. This is an important issue because the decision can be a strong determining
factor in system performance. In general. the objective is to keep blocks in the cache
that are likely to be referenced in the near future. However. it is not easy to determine
which blocks are about to be referenced. The property of locality of reference in pro-
arams gives a clue 1o a reasonable strategy. Because programs usually stay in localized
arcas for reasonable periods of time. there is a high probability that the blocks that
have been referenced recently will be referenced again soon. Therefore. when a block
is to be overwritten. it is sensible 1o overwrite the one that has gone the longest time
without being referenced. This block is called the least recently used (LRU) block. and
the technique is called the LRU replacement algorithm.

To use the LRU algorithm. the cache controller must track references to all blocks
as computation proceeds. Suppose it is required to track the LRU biock of a four-block
set in a set-associative cache. A 2-bit counter can be used for each block. When a hit
oceurs. the counter of the block that is referenced is set to 0. Counters with values
originally lower than the referenced one are incremented by one. and all others remain
unchanged. When a miss oceurs and the set is not full. the counter associated with the
new block loaded from the main memory is set to 0. and the values of all other counters
are increased by one. When a miss occurs and the set is full. the block with the counter
value 3 is removed. the new block is putin its place. and its counter s set to 0. The other
three block counters are incremented by one. It can be easily verified that the counter
values of occupied blocks are always distinct.

The LRU algorithm has been used extensively. Although it performs well for many
access patterns. it can lead to poor performance in some cases. For example. it produces
disappointing results when accesses are made to sequential elements of an array that is
slightly too large to fitinto the cache (see Section 5.5.3 and Problem 5.12). Performance
of the LRU algorithm can be improved by introducing a small amount of randomness
i deciding which block to replace.

Several other replacement algorithms are also used in practice. An intuitively rea-
sonable rule would be to remove the “oldest™ block from a full set when a new block
must be brought in. However. because this algorithm does not take into account the
recent pattern of access to blocks in the cache. it is generally notas effective as the LRU

322

CHAPTER 5 ¢ THE MEMORY SYSTEM

algorithm in choosing the best blocks to remove. The simplest algorithm is to randomly
choose the block to be overwritten. Interestingly enough. this simple algorithm has been
found to be quite effective in practice.

5.5.3 EXAMPLE OF MAPPING TECHNIQUES

We now consider a detailed example to illustrate the effects of different cache mapping
techniques. Assume that a processor has separate instruction and data caches. To keep
the example simple. assume the data cache has space for only eight blocks of data. Alse
assume that cach block consists of only one 16-bit word of data and the memory i<
word-addressable with 16-bit addresses. (These parameters are not realistic for actual
computers. but they allow us to illustrate mapping techniques clearly.) Finally. assume
the LRU replacement algorithm is used for block replacement in the cache.

Let us examine changes in the data cache entries caused by running the following
application: A 4 > 10 array of numbers. each occupying one word. is stored in main
memory locations 7A00 through 7A27 (hex). The elements of this array. A. are stored in
column order. as shown in Figure 5.1&. The figure also indicates how tags for different
cache mapping techniques are derived from the memory address. Note that no bits are
needed to identify a word within a block. as was done in Figures 5.15 through 5.17.
because we have assumed that each block contains only one word. The application
normalizes the elements of the first row of A with respect to the average value of the
¢lements in the row. Hence. we need to compute the average of the elements in the row

Memory address Contents
(TAO0) O1T 11T 101000000000 AL0.0)
(7A01) O1 11T 101000000001 Al
(7A02) Gr 11 roro0o00000010 A2.0)
(7A03) Or 1110000000001 °1 A3y
(7TA04H O 1101000000100 A0
(7A24) Ortr1riroito0001 00100 AL09)
(7A25) O1T 11T 1016000100101 A(1Y)
(TA20) Ot 1T 1107000100110 A
(TA27) O1T 1T 1010001000 141 A9

~—— Tag for direct mapped ——=
~——— Tag for set-associative ———m=

- [ag for associative ——————

Figure 5.18 An array stored in the main memory.

Block
position

0
1

12

()

‘N

5.5 CACHE MEMORIES

SUN = 0
for j:= 0 to 9 do
SUN[= SUN + AO]
end
AVE = SUN < 1o
for i:= 9 downto - do
A0y A s AVE

end

Figure 5.19 Task for example in
Section 5.5.3.

Contents of data cache after pass:

iz j=3j=5]j=7lj=9}i=6{i=4|i=2]i=0
ANOOY TAOD T AOD T A6 | AR | A6y | A4 1 A©O2) | A0.0)
MO TAOD T AOSTT AOTY | A9 [AT | AOS) | A3 | A0

Figure 5.20 Contents of a directmapped data cache.

and divide each element by that average. The required task can be expressed as

A7) — —— —— — fori = 0.1

A0
y

pa—y)

L AW /10

Figure 5.19 gives the structure of a program that corresponds to this task. Ina machine
language implementation of this program. the wrray elements will be addressed as
memory locations. We use the variables SUM and AVE to hold the sum and average
values. respectively. These variables. as well as index variables i and j. will be held in
processor registers during the computation.

Direct-Mapped Cache

In a direct-mapped data cache. the contents of the cache change as shown in
Figure 5.20. The columus in the table indicate the cache contents after various passes
through the two program loops in Figure 5.19 are completed. For example. after the
second pass through the first loop (/= 1). the cache holds the elements A(0.0) and

323

324

CHAPTER 5 + THE MEMORY SYSTEM

A(0.). These elements are in block positions 0 and 4. as determined by the three least-
significant bits of the address. During the next pass. the A(0. 0) element is replaced by
A(0. 2). which maps into the same block position. Note that the desired elements map
into only two positions in the cache. thus leaving the contents of the other six positions
unchanged from whatever they were before the normalization task was executed.

After the tenth pass through the firstloop (j = 9). the elements A(0. 8) and A(0. 9)
are found in the cache. Since the second loop reverses the order in which the elements
are handled. the first two passes through this loop (7 = 9. 8) will find the required data
in the cache. When i = 7. the clement A(0. 9) is replaced with A(0. 7). When i = 6.
element A(0. 8) is replaced with A(0. 6). and so on. Thus. eight elements are replaced
while the second loop is executed.

The reader should keep in mind that the tags must be kept in the cache for cach
block. We have not shown them in the figure for space reasons.

Associative-Mapped Cache

Figure 5.21 presents the changes if the cache is associative-mapped. During the
first eight passes through the first loop. the elements are brought into consecutive block
positions. assuming that the cache was initially empty. During the ninth pass (j = 8).
the LRU algorithm chooses A(0. 0) to be overwritten by A(0. 8). The next and last
pass through the j loop sces A0, 1) replaced by A0, 9). Now. for the first eight passes
through the second loop (i =9.8. 2) all required elements are found in the cache.
When @ = 1. the element needed is A0, D). so it replaces the least recently used
clement, A(0. 9). During the last pass. A0, 0) replaces A0, 8).

In this case. when the second loop is executed. only two elements are not found in
the cache. In the direct-mapped case. eight of the elements had to be reloaded during
the second loop. Obviously. the associative-mapped cache benetits from the complete
frecdom in mapping a memory block into any position in the cache. Good utilization

Contents of data cache after pass:

Block

o N . . D
rmiliun 1= [=8 /) ! l ! v

0 A | A8 | A8 [A8 | AW0.0)
| AOD) | AW | A0 | A | A0
A2 [A2 | A2 | A2] A0
A0 | A] A03) | A3y | A(0.3)

to

i

4 A4 | A0] A0S | A0S | A0
S ACOS5) | A | A0S | ALS)] A0S
6 AD.6) | A6 | A06) | AW0.6) | ALO.0)

AT | AT | AT | ATy A0T7)

~1

Figure 5.21 Contents of an associative-mapped
data cache.

5.5 CACHE MEMORIES

Contents of data cache atter pass:

j=3|j=T7j=9]i=4]|i=2|i=0

A0.0) | A0 | A0S | A0S | AO4 | A0

- A] A0S | A0.9) [AOS) [A03) [AW

Sel

c A0 | A0.6) | A6 | A0.6) | A0 | A2
A3 [A7) [A0 | A0 | A3 | A0

Set |

Figure 5.22 Contents of a set-associative-mapped data cache.

ol this cache also occurred because we chose to reverse the order in which the elements
are handled in the second loop of the program. It is interesting to consider what would
happen if the second loop dealt with the elements in the same order as in the first loop
isee Problem 5.12). Using the LRU algorithm. ali elements would be overwritten before
they are used in the second loop. This degradation in performance would not occur if
arandom replacement algorithm were used.

Set-Associative-Mapped Cache

For this example, we assume that a set-associative data cache is organized into two
sets, each capable of holding four blocks. Thus. the least-significant bit of an address
determines which set the corresponding memory block maps into. The high-order 15
bits constitute the tag.

Changes in the cache contents are depicted in Figure 5.22. Smce all the desived
hlocks have even addresses. they map into set 0. Note that. in this case. six elements
must be reloaded during execution of the second loop.

Even though this is a simplified example. it tltustrates that in general. associative
mapping performs best. set-associative mapping is next best. und direct mapping is the
worst. However. fully associative mapping is expensive to implement. so set-associative
mapping is a good practical compromise.

I3

5.5.4 EXAMPLES OF CACHES IN COMMERCIAL PROCESSORS

We now consider the implementation of caches in the 68040, ARM710T. and Pentium
Il and 4 processors.
68040 Caches

Motorola’s 68040 has two caches included on the processor chip — one used for
instructions and the other for data. Each cache has a capacity of 4K bytes and uses a

325

326

CHAPTER 5 « THEMEMORY SYSTEM

four-way set-associative organization illustrated in Figure 5.23. The cache has 64 sets.
each ol which can hold 4 blocks. Each block has 4 Tong words. and each long word
has 4 bytes. For mapping purposes. an address is interpreted as shown in the blue box
in the figure. The least-significant 4 hits specify a byte position within a block. The
next 6 bits identify one of 64 sets. The high-order 22 bits constitute the tag. To keep
the notation in the figure compact. the contents of cach of these fields are shown in hex
coding.

The cache control mechanism includes one valid bit per block and one dirty bit
for each long word in the block. These bits are explained in Section 5.5.1. The valid
bit is set to I when a corresponding block is first loaded into the cache. An individual
dirty bit is associated with each long word. and it is set to | when the long-word dat
are changed during a write operation. The dirty bit remains set until the contents of the
block are written back into the main memory.

When the cache is accessed. the tag bits of the address are compared with the four
tags in the specified set If one of the tags matches the desired address and 1f the valid
bit for the corresponding block is equal to 1. then a hit has occurred. Figure 5.23 gives
an example in which the addressed data are found in the third long word of the fourth
block in set 0.

The data cache can use either the write-back or the write-through protocol. under
control of the operating system software. The contents of the instruction cache are
changed only when new instructions are loaded as a result of a read miss. When a new
block must be brought into a cache set that is already full. the replacement algorithm
chooses at random the block 1o be ejected. Of course. if one or more of the dirty bits in
this block are equal to 1. then a write-back must be performed first.

ARM710T Cache

The ARM family comprises processors that have an efficient RISC-type architec-
ture. characterized by low cost and low power consumption. The ARM710T is one of
the processors in this family. It has a single cache for both instructions and data.

The organization of the ARM7I10T cache is similar to the cache depicted in
Figure 5.23. It is arranged as a four-way set-associative cache. Each block comprises
16 bytes. composed of four 32-bit words.

The write-through protocol 1s used when the processor writes to the cache. A
random-replacement algorithm is used to decide which cache block is to be overwritten
when space for a new block is needed.

The ARMT710T cache structure 1s consistent with the low cost und low power con-
sumption objective. A single unified cache. holding both instructions and data. is sim-
pler than two separate caches. The write-through protocol and the random-replacement
algorithm are also conducive to simple implementations.

Pentium III Caches

Pentium 111 is o high performance processor. Since high performance depends on
fast access to instructions and data. Pentium HI employs two cache levels. Level |
consists of a 16-Kbyte instruction cache and a 16-Kbyte data cache. The data cache
has a four-way set-associative organization. and it can use either the write-back or the
write-through policy. The instruction cache has a two-way set-associative organization.

5.5 (CACHE MEMORIES 327

22 bits 6 bits 4 bits
Address 0000 0000 0010 1111 1100 1000 D000 1000
Vv hnVand
A i
; I T
| o
| 000BE2 [oo | s}
J I Byte
Set
[0CcA20 Jvld
...__———] p—ri Block O
]
] tag |v]d
— Block 1
_ T L Set
Hit=0 —| tag [v]d 0
: — Block 2
I ~ 4]
l | 000BF2 N]d
- —l — Block 3
-
||
d
Miss =0
7 <
Hit= 1 T T
— Block 0
]
[tay I\ d
- Block |
T Sct
[lag Jv]d 03
— Block 2
4]
| tag [v]d
— Block 3
]

Figure 5.23 Data cache organization in the 68040 microprocessor

328 CHAPTER 5 « THE MEMORY SYSTEM

Processing units

LT instruction L1 data
cache cache

Bus interface unit

System bus

Cache bus

- Main
.2 cache Memory Input/Output

Figure 5.24 Caches and external connections in Pentium Il processor.

Since instructions are normally not modified during execution of a program, there is
no need for a write policy for the instruction cache.

The L2 cache is much larger. It holds both instructions and data. It is connected
to the rest of the system as shown in Figure 5.24. A bus interface unit interconnects
the caches. the main memory. and the 1/0O devices. Two separate buses are used: a fast
cache bus connects the 1.2 cache to the processor. while a slower svstem bus connects
the main memory and /0 devices.

The L2 cache can be implemented external to the processor chip. as is done in the
Pentium 11 version known as Katmai. In this case. the cache contains 512 Kbytes and
is implemented using SRAM memory. Its organization is four-way set-associative. It
uses either the write-back or the write-through protocol. programmable on a per-block
basis. The cache bus is 64 bits wide.

Improvements in VL.SEtechnology have made it possible to integrate the L.2 cache
on the processor chip. This was done in the Pentium HI version known as Coppermine.
In this case. the cache size is 256 Kbytes. An cight-way set-associative organization is
used. Since the L2 cache is on the processor chip. it is possible to use a wider 256-bit
cache bus.

These examples raise an interesting question — is it better to implement the 1.2
cache externally or on the processor chip? External implementation allows for a larger
cache. However. it is not conducive to a wide data path connection 1o the processor

5.6 PERFORMANCE CONSIDERATIONS

because of the pins needed and increased power consumption of the output drivers.
Also. external caches have lower clock speeds. The Katmai L2 cache is driven at
half the speed of the processor clock. while Coppermine L2 cache is driven at full
processor clock speed. Placing the L2 cache on the processor chip reduces the la-
tency of access and increases the bandwidth because data are transferred using a wider
path. This results in superior performance. The main drawback ot integrating the 1.2
cache is that the processor chip becomes much larger. which makes 1t more difficult to
fubricate.

Pentium 4 Caches

The Pentium 4 processor can have up to three levels of caches. The L1 cache
consists of separate data and instruction caches. The data cache has a capacity of 8K
bytes. organized in a 4-way set-associative manner. Each cache block has 64 bytes. The
write-through policy is used on writes to the cache. Integer data can be accessed from
the data cache in two clock cycles. Pentium 4 chips can use clock signals in excess of
{.3 GH/. which means that the data can be accessed in less than 2 ns. The instruction
cache does not hold normal machine instructions. Instead. it holds already decoded
versions of instructions. as will be discussed in Chapter 11.

The L2 cache is aunilied cache with a capacity of 256K bytes. orgunized inan 8-way
set-associative manner. Each of its blocks comprises 128 bytes. The write-back policy
is used on writes to the cache. The access latency of this cache is seven clock cycles.

Both L1 and L2 caches are implemented on the processor chip. The architecture also
allows for inclusion of an on-chip L3 cache. However. this cache is not implemented in
the Pentium 4 chips targeted for desktop computers. It is intended for processor chips
used in server systems.

5.6 PERFORMANCE CONSIDERATIONS

Two key factors in the commercial success of a computer are performance and cost:
the best possible performance at the lowest cost is the objective. The challenge in
considering design alternatives is to improve the performance without increasing the
cost. A common measure of success is the pricelperformance ratio. In this section. we
discuss some specific features of memory design that lead to superior performance.

Performance depends on how fast machine instructions can be brought into the
processor for execution and how fast they can be exccuted. We will discuss the speed
of execution in Chapters 7 and 8. and show how additional circuitry can be used to
speed up the execution phase of instruction processing. In this chapter. we focus on the
memory subsystem.

The memory hierarchy described in Section 5.4 results from the quest for the best
price/performance ratio. The main purpose of this hierarchy is to create a memory
that the processor sees as having a short access time and a large capacity. Each level
of the hierarchy plays an important role. The speed and efficiency of data transfer
between various levels of the hierarchy are also of great significance. It is beneficial
il transfers to and from the faster units can be done at a rate cqual to that of the

329

330 CHAPTER 5 -+ THE MEVMIORY SYSTEM

faster unit. This 1s not possible 1f both the slow and the fast units are accessed in
the same manner. but it can be achieved when parallelism is used in the organization
of the slower unit. An effective way to introduce parallelism is to use an interleaved
organization.

5.6.1 INTERLEAVING
It the main memory ol a computer is structured as a collection of physically separate

modules. each with its own address buffer register (ABR) and data buffer register
(DBR). memory access operations may proceed in more than one module at the same

- A bils — a——— bl ——

Module Address i module MM address

L] 1 J

' ! '

| — | e al | —
AER | DBR ABR | DBR ABR | DBR
Module Module Module
0 e ! - 1o

(a) Consecutive words in a module

m bits ~-— L bils —=
Address in module Module MM address
L I |
ABR | DBR ABR | DBR ABR | DBR
Module Module Module =
0 e i e R

(b) Consecutive words in consecutive modules

Figure 5.25 Addressing multiple-module memory systems.

5.6 PERFORMANCE CONSIDERATIONS

time. Thus. the aggregate rate of transmission of words to and from the main memory
svstem can be increased.

How individual addresses are distributed over the modules is eritical in determining
the average number of modules that can be kept busy as computations proceed. Two
methods of address layout are indicated in Figure 5.25. In the first case. the memory
address gencrated by the processor is decoded as shown i Figure 5.25¢. The high-
order & bits name one of 1 modules. and the Tow-order m bits nanie a particular word

in that module. When consecutive locations are accessed. as happens when a block of

datais transferred to a cache. only one module is involved. At the same time. however.
devices with direct memory access (DMA) ability may be accessing information in
other memory modules.

The second and more effective way to address the modules is shown in Figure 5.255.
I is called memaory interleaving. The tow-order & bits of the memory address select
a module. and the high-order m bits name a location within that imodule. In this way.
conseeutive addresses are located in successive modules. Thus. any component of the
system that generates requests for access 1o consecutive memory locations can keep

<everal modules busy at any one time. This results in both faster aceess o a block of

data and higher average utilization of the memory system as a whole. To implement

the interleaved structure. there must be 2% modules: otherwise. there will be gaps of

nonexistent locations in the memory address space.

The eftect of interleaving is substantial. Consider the time needed to transfer a block
of data from the main memory to the cache when a read miss occurs. Suppose that a
cache with S-word blocks is used. similar to our examples in Section 5.5 On a read
miss. the block that contains the desired word must be copied from the memory into
the cache. Assume that the hardware has the tfollowing properties. It takes one clock
cyele to send an address to the main memory. The memory is built with relatively slow
DRAM chips that allow the first word to be accessed in 8 cycles. but subsequent words
of the block are accessed in 4 clock cycles per word. (Recall from Section 5.2.3 that.
when consecutive locations in a DRAM are read from a given row of cells. the row
address is decoded only once. Addresses of consecutive columns of the array are then
applied 1o access the desired words. which takes only half the tine per access.) Also.
one clock evele is needed to send one word to the cache.

If a single memory module is used. then the time needed to load the desired block
into the cache is

I+ 84+ (7 x4 + | =38cycles

Suppose now that the memory is constructed as four interleaved modules. using the
scheme in Figure 5.25h. When the starting address of the block arvives at the memory.
all four modules begin accessing the required data. using the high-order bits of the
address. After 8 clock cycles. each module has one word of datu in its DBR. These
words are transterred to the cache. one word at a time. during the next 4 clock cycles.
During this time. the next word in each module is accessed. Then it takes another 4
cycles to transfer these words to the cache. Therefore. the total time needed to load the

331

Example 5.1

332

Example 5.2

CHAPTER 5 <« THE MEMORY SYSTEM

block from the interleaved memory is
F+84+4+4=17cycles

Thus. interleaving reduces the block transfer time by more than a factor of 2.

In Section 5.2.4, we mentioned that interleaving is used within SDRAM chips to
improve the speed of accessing successive words of data. The memory array in mosl
SDRAM chips is organized as two or four banks of smaller interleaved arrays. This
improves the rate at which a block of data can be transferred to or from the main memory.

5.6.2 HIT RATE AND MISS PENALTY

Anexcellentindicator of the effectiveness of a particular implementation of the memory
hierarchy is the success rate in accessing information at various levels of the hierarchy.
Recall that a successful access to data in a cache is called a hit. The number of hits
stated as a fraction of all attempted accesses is called the hit rate, and the miss rate is
the number of misses stated as a fraction of attempted accesses.

Ideally. the entire memory hierarchy would appear to the processor as a single
memory unit that has the access time of a cache on the processor chip and the size of a
magnetic disk. How close we get to this ideal depends largely on the hit rate at different
levels of the hierarchy. High hit rates. well over 0.9, are essential for high-performance
computers.

Performance is adversely affected by the actions that must be taken after a miss.
The extra time needed to bring the desired information into the cache is called the miss
penalry. This penalty is ultimately reflected i the time that the processor is stalled
because the required instructions or data are not available for execution. In general.
the miss penalty is the time needed to bring a block of data from a slower unit in
the memory hierarchy to a faster unit. The miss penalty is reduced if efficient mecha-
nisms for transferring data between the various units of the hierarchy are implemented.
The previous section shows how an interleaved memory can reduce the miss penalty
substantially.

Consider now the impact of the cache on the overall performance of the computer. Let
frbe the hitrate. M the miss penalty. that is. the time to access information in the main
memory. and C the time to access information in the cache. The average access time
experienced by the processor is

Lo = hC 4+ (1 — M
We use the same parameters as in Example S.1. If the computer has no cache. then.,
using a fast processor and a typical DRAM main memory. it takes 10 clock cycles tor

each memory read access. Suppose the computer has a cache that holds 8-word blocks
and an interleaved main memory. Then. as we showed in Section 5.6.1. 17 cycles are

5.6 PERFORMANCE CONSIDERATIONS

needed to load a block into the cache. Assume that 30 percent of the instructions in
a typical program perform a read or a write operation. which means that there are
130 memory accesses for every 100 instructions executed. Assume that the hit rates
in the cache are 0.95 for instructions and 0.9 for data. Let us further assume that the

miss penalty is the same for both read and write accesses. Then. a rough estimate of

the improvement in performance that results from using the cache can be obtained as
foltows:

Time without cache 130 x 10

= — =5.04
Time with cache 100(0.95 x 1 +0.05 x 17) 4+ 30(0.9 x | +0.1 x 17)

This result suggests that the computer with the cache performs five times better.

It is also interesting to consider how effective this cache is compared to an ideal
cache that has a hit rate of 100 percent (in which case. all memory references take one
cycle). Our rough estimate of relative performance for these caches is

1000.95 x 1 +0.05 % 17) + 30009 x 1 +0.1 x 17)
130 -

This means that the actual cache provides an environment in which the processor
cffectively works with a large DRAM-based main memory that appears to be only two
times slower than the circuits in the cache.

In this example, we made a simplifying assumption that the same clock 1s used to
access the on-chip cache and the main memory via the system bus. A high-performance
processor is likely to operate under the control of a clock that is much faster than the
system bus clock, perhaps up to ten times faster. Let us consider the impact of a cache
in a system of this type.

Suppose that there is a single cache that is implemented on the processor chip and that
the main memory is realized using SDRAM chips. Assume that the system bus clock
is four times slower than the processor clock. As in Example 5.2, assume that a cache
block contains 8 words, and that the hit rates in the cache are 0.95 for instructions and
0.9 for data. The SDRAM timing diagram is similar to Figure 5.9. The only difference
is that there is a burst of 8 data words rather than four. Thus, according to Figure 5.9.
it will take 14 clock cycles from when the RAS signal is asserted to transfer a block
of data between the main memory and the cache. Since the RAS and CAS signals are
senerated by the memory controller. as indicated in Figure 5.11. one more cycle is
needed during which the processor sends the address of the first word in a block to the
memory controller. Therefore. a total of 15 cycles is needed to transfer a block. The
cycles shown in Figure 5.9 are the system bus clock cycles. If the processor clock is
four times faster. then it takes 60 processor cycles to transfer an 8-word block to or
(rom the main memory. Note also that Figure 5.9 indicates that the processor can read
or write a single word in the main memory in 9 bus clock cycles, consisting of the 8
cycles indicated in Figure 5.9 plus one cycle needed to send an address to the memory
controller, Hence, 36 processor cycles are needed to access a single word in the main
memory. Yet. the processor accesses a word in the cache in one processor cycle!

333

Example 5.3

334

CHAPTER 5 + THE MEMORY SYSTEM

Repeating the calculation in Example 5.2 gives:

Time without caclie 130 x 36

= I 77

Time with cache 1000095 x 1 +0.05 » 60) + 30(0.9 x 1+ 0.1 x 60)

Thus. accounting for the differences between processor and system bus clock speeds
shows that the cache has an even greater positive effect on the performance.

In the preceding examples. we distinguish between instructions and data as far as
the hit rate is concerned. Although hit rates above 0.9 are achievable for both. the hit
rate for instructions is usually higher than that for data. The hit rates depend on the
design of the caclic and on the instruction and data access patterns of the prograns
being executed.

How can the hit rate be improved? An obvious possibility is to make the cache
larger. but this entails increased cost. Another possibility is to increase the block size
while keeping the total cache size constant. to take advantage of spatial locality. If all
items i a larger block are needed in & computation. then it is better to load these items
into the cache as o consequence of a single miss. rather than loading several smaller
blocks as a result of several misses. The efficiency of parallel access to blocks in an
mterleaved memory is the basic reason for this advantage. Larger blocks are effective
up o a certain size. but eventually any further improvement in the hit rate tends (o
be offset by the fact that. in a larger block. some items may not be referenced before
the block is ejected (replaced). The miss penalty increases as the block size increases.
Since the performance of a computer is affected positively by increased hit rate and
negatively by increased miss penalty. the block sizes that are neither very small nor
very large give the best results. In practice. block sizes in the range of 16 to 128 bytes
have been the most popular choices.

Finally. we note that the miss penalty can be reduced if the load-through approach
is used when loading new blocks into the cache. Then. instead of waiting for the
completion of the block transfer. the processor can continue as soon as the required
word is loaded in the cache.

5.6.3 CACHES ON THE PROCESSOR CHIP

When information is transferred between different chips. considerable delays are in-
troduced in driver and receiver gates on the chips. Thus. from the speed point of view.
the optimal place for a cache is on the processor chip. Unfortunately. space on the
processor chip is needed for many other functions: this limits the size of the cache that
can be accommodated.

Allhigh-performance processor chips include some form of a cache. Some manu-
facturers have chosen to implement two separate caches. one for instructions and another
for data. as in the 68040, Pentium I11. and Pentium 4 processors. Others have imple-
mented a single cache for both instructions and data. as in the ARM710T processor.

A combined cache for instructions and data is likely to have a somewhat better
hit rate because it offers greater flexibility in mapping new information into the cache.
However it separate caches are used. itis possible to access both caches at the same time.

5.6 PERFORMIANCE CONSIDERATIONS

which leads o increased parallelism and. hence. better performance. The disadvantage
of separate caches is that the increased parallelism comes at the expense of more
complex cireuitry.

In high-performance processors two levels of caches are normally used. The LI
cachets) is on the processor chip. The L2 cache. which is much larger. may be im-
plemented externally using SRAM chips. But. a somewhat smaller L2 cache may also

be implemented on the processor chip. as illustrated by the Coppermine version of

Pentium HI processors described in Section 3.5.4.

If both L1 and 1.2 caches are used. the L1 cache should be designed to allow very
fast access by the processor because its access time will have a large effect on the clock
rate of the processor. A cache cannot be accessed at the same speed as a register file
because the cache is much bigger and. hence, more complex. A practical way 1o speed
up access 1o the cache is to access more than one word simultaneously and then let the
processor use themone at atime. This technigue 1s used in many commercial processors.

The 1.2 cache can be slower. but it should be much larger to ensure a high hit rate.
lis speed is Jess critical because it only affects the miss penalty of the L1 cache. A
workstation computer may include an L1 cache with the capacity of tens of kilobytes
and an L2 cache of several megabytes.

Including an L2 cache further reduces the impact of the main memory speed on
the performance of a computer. The average access time experienced by the processor
in a system with two levels of caches is

tyve =11, Cy - 1 —hph-Cr =+ (1 — ho ol —haaM
where

/iy is the hitrate i the L1 cache.

I15 1s the hit rate in the L2 cache.

(' is the time to access information in the LT cache.

C> is the time 10 access information in the 1.2 cache.

M is the time to access information in the main memory.

The number of misses in the L2 cache. given by the term (1 - /1)1 — /15). should be
low. If both /1y and /1> are in the 90 percent range. then the number of misses will be
less than | percent of the processor’s memory accesses. Thus. the miss penalty M will
be less critical from a performance point of view. See Problem 5.18 for a quantitative
examination of this issue.

5.6.4 OTHER ENHANCEMENTS

In addition to the main design issues just discussed. several other possibilities exist for
enhancing performance. We discuss three of them in this section.

Write Buffer
When the write-through protocol is used. each write operatior results in writing a

new value into the main memory. If the processor must wait for the memory function
to be completed. as we have assumed until now. then the processor is slowed down

335

336

CHAPTER 5 + THE MEMORY SYSTEM

by all write requestis. Yet the processor typically does not immediately depend on the
result of a write operation. so it is not necessary for the processor to wait for the write
request to be completed. To improve performance, a write buffer can be included for
temporary storage of write requests. The processor places each write request into this
butter and continues execution of the next instruction. The write requests stored in the
write buffer are sent to the main memory whenever the memory is not responding to
read requests. Note that it is important that the read requests be serviced immediately
because the processor usually cannot proceed without the data that are to be read from
the memory. Hence. these requests are given priority over wrile requests.

The write bufter may hold a number of write requests. Thus. it is possible that u
subsequent read request may refer to data that are still in the write buffer. To ensure
correct operation. the addresses of data to be read from the memory are compared with
the addresses of the data in the write buffer. In case of a match. the data in the write
buftfer are used.

A different situation occurs with the write-back protocol. In this case. the write
operations are simply performed on the corresponding word in the cache. But consides
what happens when a new block of data is 10 be brought into the cache as a result
of a read miss. which replaces an existing block that has some dirty data. The dirty
block has to be written into the main memory. If the required write-back is performed
first. then the processor will have to wait longer for the new block to be read into the
cache. Itis more prudent to read the new block first. This can be arranged by providing
a fast write bufter for temporary storage of the dirty block that is ejected from the
cache while the new block is being read. Afterward. the contents of the buffer are
written into the main memory. Thus, the write buffer also works well for the write-back
protocol.

Prefetching

In the previous discussion of the cache mechanism. we assumed that new data are
brought into the cache when they are first needed. A read miss occurs. and the desired
data are loaded from the main memory. The processor has (o pause until the new data
arrive, which is the effect of the miss penalty.

To avoid stalling the processor. it is possible to prefetch the data into the cache
before they are needed. The simplest way to do this is through software. A special
prefetch instruction may be provided in the instruction set of the processor. Executing
this instruction causes the addressed data to be loaded into the cache. as in the case of
aread miss. However. the processor does not wait for the referenced data. A prefetch
instruction is inserted in a program to cause the data to be loaded in the cache by the time
they are needed in the program. The hope is that prefetching will take place while the
processor is busy executing instructions that do not result in a read miss. thus allowing
accesses to the main memory to be overlapped with computation in the processor.

Prefetch instructions can be inserted into a program either by the programmer or
by the compiler. Itis obviously preferable to have the compiler insert these instructions.
which canbe done with good success for many applications. Note that software prefetch-
ing entails a certain overhead because inclusion of prefetch instructions increases the
length of programs. Moreover. some prefetches may load into the cache data that will
not be used by the instructions that follow. This can happen if the prefetched data are

5.7 VIRTUAL MEMORIES

cjected from the cache by a read miss involving other data. However, the overall effect
of software prefetching on performance is positive. and many processors have machine
instructions to support this feature. See Reference [1] for a thorough discussion of
software prefetching.

Prefetching can also be done through hardware. This involves adding circuitry that
attempts to discover a pattern in memory references and then prefetches data according
to this pattern. A number of schemes have been proposed for this purpose. but they are
beyond the scope of this book. A description of these schemes is found in References
[2] and [3].

Intel’s Pentium 4 processor has facilities for prefetching information into its caches
using both software and hardware approaches. There are special prefetch instructions
that can be included in programs to bring a block of data into a desired level of cache.
Harware-controlled prefetching brings cache blocks into the 1.2 cache based on the
patterns of previous usage.

Lockup-Free Cache

The software prefetching scheme just discussed does not work well if it interferes
significantly with the normal execution of instructions. This is the case if the action of
prefetching stops other accesses to the cache until the prefetch is completed. A cache
of this type is said to be locked while it services a miss. We can solve this problem by
modifying the basic cache structure to allow the processor to access the cache while a
miss is being serviced. In fact. it is desirable that more than one outstanding miss can
be supported.

A cache that can support multiple outstanding misses is called lockup-free. Since
it can service only one miss at a time. it must include circuitry that keeps track of all
outstanding misses. This may be done with special registers that hold the pertinent
information about these misses. Lockup-free caches were first used in the early 1980s
in the Cyber series of computers manufactured by Control Data company [4].

We have used software prefetching as an obvious motivation for a cache that is
not locked by a read miss. A much more important reason is that. in a processor that
uses a pipelined organization. which overlaps the execution of several instructions. a
read miss caused by one instruction could stall the execution of other instructions. A
lockup-free cache reduces the likelihood of such stalling. We return to this topic in
Chapter 8. where the pipelined organization is examined in detail.

i

5.7 VIRTUAL MEMORIES

In most modern computer systems, the physical main memory is not as large as the
address space spanned by an address issued by the processor. For example. a processor
that issues 32-bit addresses has an addressable space of 4G bytes. The size of the main
memory in a typical computer ranges from a few hundred megabytes to 1G bytes. When
a program does not completely fit into the main memory. the parts of it not currently
being executed are stored on secondary storage devices. such as magnetic disks. Of
course. all parts of a program that are eventually executed are first brought into the

337

338

CHAPTER 5 + THE MEMORY SYSTEM

main memory. When a new segment of a program is to be moved into a full memory.
it must replace another segment already in the memory. In modern computers. the
operating system moves programs and data automatically between the main memory
and secondary storage. Thus. the application programmer does not need to be aware of
limitations imposed by the available main memory.

Technigues thatautomatically move program and data blocks into the physical main
memory when they are required for exccution are called virtal-memory techniques.
Programs. and hence the processor. reference an instruction and data space that is
independent of the available physical main memory space. The binary addresses that
the processorissues for either instructions or data are called virnal or logical addresses.
These addresses are translated into physical addresses by a combination of hardware and
software components. If a virtual address refers to a part of the program or data space
that is currently in the physical memory. then the contents of the appropriate location
in the main memory are accessed immediately. On the other hand. if the referenced
address is notin the main memory. its contents must be brought into a suitable location
in the memory before they can be used.

Figure 5.26 shows a typical organization that implements virtual memory. A spe-
cial hardware unit. called the Memory Management Unit (MMU). translates virtual

Processor
Virtual address
Data MNMU
Physical address
)
Cache
Data Physical address

Main memory

DMA transfer

Disk storage

Figure 5.26 Virtual memory organization.

5.7 VIRIUAL MEMORIES

addresses into physical addresses. When the desired data (or instructions) are in the
main memory. these data are fetched as described in our presentation of the cache
mechanism. If the data are not in the main memory. the MMU causes the operating
system to bring the data into the memory from the disk. Transter of data between
the disk and the main memory is performed using the DMA scheme discussed in
Chapter 4.

Lo

5.7.1 ADDRESS TRANSLATION

A simple method for translating virtual addresses into physical addresses is to assume
that all programs and data are composed of fixed-length units called pages. cach of
which consists of a block of words that occupy contiguous locations in the main memory.
Pages commonly range from 2K to 16K bytes in length. They constitute the basic unit
of information that is moved between the main memory and the disk whenever the
wranslation mechanism determines that a move is required. Pages should not be too
small. because the access time of a magnetic disk is much longer (several milliseconds)
than the access time of the main memory. The reason for this is thatittakes aconsiderable
amount of time to locate the data on the disk. butonce located. the data can be transterred
at a rate of several megabytes per second. On the other hand. if pages are 1o large itis
possible that a substantial portion of a page may not be used. yet this unnecessary data
will occupy valuable space in the main memory.

This discussion clearly parallels the concepts introduced in Section 5.5 on cache
memory. The cache bridges the speed gap between the processor and the main mem-
ory and is mmplemented in hardware. The virtual-memory mechanism bridges the
size and speed gaps between the main memory and secondary storage and 1s usually
implemented in part by software techniques. Conceptually. cache technigques and virtual-
memory techniques are very similar. They differ mainly in the details of their imple-
mientation.

A virtual-memory address translation method based on the concept of fixed-length
pages is shown schematically in Figure 5.27. Each virtual address generated by the
processor. whether it is for an instruction fetch or an operand fetch/store operation, is
interpreted as a virtual page number thigh-order bits) followed by an offser (low-order
bits) that specities the location of a particular byte (or word) within a page. Information
about the main memory location of cach page is keptin a page ralle. This information
includes the main memory address where the page is stored and the current status of
the page. An area in the main memory that can hold one page is called a page frame.
The starting address of the page table is keptin a page table base regisier. By adding
the virtual page number to the contents of this register. the address of the corresponding
entry in the page table is obtained. The contents of this location aive the starting address
of the page if that page currently resides in the main memory.

Each entry in the page table also includes some control bits that describe the status
of the page while itis in the main memory. One bitindicates the validity ol the page. that
is. whether the page is actually loaded in the main memory. This bitallows the operating
systemto invalidate the page withoutactually removing it. Another bitindicates whether
the page has been modified during its residency in the memory. As in cache memories.

339

340

CHAPTER 5 -+ THE MEMORY SYSTEM

Virtual address from processor

Page table base register

Page table address Virtual page number Offset
|
+
PAGE TABLE
L | —=
-

Control Page frame
bits in memory

Page frame Offset

l

Physical address in main memory

Figure 5.27 Virtual-memory address translation.

this information is needed to determine whether the page should be written back to
the disk before it is removed from the main memory to make room for another page.
Other control bits indicate various resirictions that may be imposed on accessing the
page. For example. a program may be given full read and write permission, or it may
be restricted to read accesses only.

The page table information is used by the MMU for every read and write access.
so ideally. the page table should be situated within the MMU. Unfortunately. the page
table may be rather large. and since the MMU is normally implemented as part of the
processor chip (along with the primary cache). it is impossible to include a complete
page table on this chip. Therefore. the page table is kept in the main memory. However.
a copy of a small portion of the page table can be accommodated within the MMU.

5.7 VIRTUAL MEMORIES

This portion consists of the page table entries that correspond to the most recently
‘fxc.cessed pages. A small cache. usually called the Translation Lookaside Buffer (TLB)
is incorporated into the MMU for this purpose. The operation of the TLB with respect
to the page table in the main memory is essentially the same as the operatioinI we
have dlsCL}sseci in conjunction with the cache memory. In addition to the information
that constitutes a page table entry. the TLB must also include the virtual address of
the entry. Figure 5.28 shows a possible organization of a TLB where the associa-t-ivc—
ma[()lpmlg technique is used. Set-associative mapped TLBs are also found in clolmmercial
products.

Virtual address from processor

1

M I
Virtual page number Offset
TLB
Virtual page Control Page frame
number bits in memory
Miss ' :
Hit

Page frame Offset

l

Physical address in main memory

Figure 5.28 Use of an associative-mapped TLB

phy sical Memory, parts OT TLPAZEN e i iy 2 NN

they are to be executed. Although we have alluded to software routines thatare needed to

manage this movement of programsegments. we have not been specitic about the details.

Management routines are part of the operating system of the computer. Itis conve-

nient o assemble the operating system routines into a virtual address space. called the

em space, thatis separate from the virtual space in which user application programs

roside. The latter space is called the wser space. In fact. there may be a number of user
paces. one for cach user. This is arranged by providing a separate page table for each
user program. The MMU uses a page table base register to determine the address of the
1able to be used in the translation process. Hence. by changing the contents of this regis-
jer. the operating system can wwiteh from one space to another. The phy sical main mem-
ory is thus shared by the active pages of the system space and several user spaces. How-
over. only the pages that belong to one of these spaces are accessible at any given time.

In any computer system in which independent user programs coexist in the main
memory. the notion of protection must be addressed. No program should be allowed to
Joetrov erther the data or instructions of other programs in the memory. Such protection

e

i E vt vt 1Y

341

344

CHAPTER 5 + THE MEMORY SYSTEM

5.9 SECONDARY STORAGE

Semiconductor memories discussed in the previous sections cannot be used to provide
all of the storage capability needed in computers. Their main limitation is the cost per
bit of stored information. Large storage requirements of most computer systems are
cconomically realized in the form of magnetic disks. optical disks. and magnetic tapes.
which are usually referred to as secondary storage devices.

5.9.1 MAGNETIC HARD DISKS

As the name implies. the storage medium in a magnetic-disk system consists of one or
more disks mounted on a common spindle. A thin magnetic film is deposited on each
disk. usually on both sides. The disks are placed in a rotary drive so that the magnetized
surfaces move in close proximity to read/write heads. as shown in Figure 5.29q. The
disks rotate at a uniform speed. Each head consists of a magnetic yoke and a magnetizing
coil, as indicated in Figure 5.2954.

Digital information can be stored on the magnetic film by applying current pulses
of suitable polarity to the magnetizing coil. This causes the magnetization of the film
n the area immediately underneath the head to switch to a direction parallel to the
applied field. The same head can be ased for reading the stored information. In this
case, changes in the magnetic field in the vicinity of the head caused by the movement
of the film relative to the yoke induce a voltage in the coil. which now serves as a sense
coil. The polarity of this voltage is monitored by the control circuitry to determine the
state of magnetization of the film. Only changes in the magnetic field under the head
can be sensed during the Read operation. Therefore. if the binary states 0 and 1 are
represented by two opposite states of magnetization. a voltage is induced in the head
only at O0-to-1 and at 1-t0-0 transitions in the bit stream. A long string of Os or s causes
aninduced voltage only at the beginning and end of the string. To determine the number
of consecutive Os or Is stored. a clock must provide information for synchronization.
In some early designs. a clock was stored on a separate track. where a change in
magnetization is forced for each bit period. Using the clock signal as a reference. the
data stored on other tracks can be read correctly.

The modern approach is to combine the clocking information with the data. Sev-
eral different technigues have been dey cloped for such encoding. One simple scheme.
depicted in Figure 5.29¢. is known as phase encoding or Manchester encoding. In
this scheme. changes in magnetization occur for each data bit. as shown in the fig-
ure. Note that a change in magnetization is guaranteed at the midpoint of ecach bit
period. thus providing the clocking information. The drawback of Manchester encod-
Ing is its poor bit-storage density. The space required to represent each bit must be
large enough to accommodate two changes in magnetization. We use the Manchester
encoding example to illustrate how a self-clocking scheme may be implemented. be-
cause it is easy to understand. Other. more compact codes have been developed. They
are much more efficient and provide better storage density. They also require more
complex control circuitry. The discussion of such codes is beyond the scope of this
book.

